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The thermal conductivity of a nanostructure is sensitive to its dimensions. A simple analytical scaling law
that predicts how conductivity changes with the dimensions of the structure, however, has not been developed.
The lack of such a law is a hurdle in “phonon engineering” of many important applications. Here, we report an
analytical scaling law for thermal conductivity of nanostructures as a function of their dimensions. We have
verified the law using very large molecular dynamics simulations.
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Thermal conductivity is a size-independent property for
macroscopic scale materials, but becomes sensitive to sizes
when the feature dimension is reduced to nano- or microme-
ter scale.1 This size-dependence is critical for nanostructure
applications. For instance, it can be utilized to engineer high
thermal conductivity and heat dissipation of microelectronic
elements and thereby to effectively increase their density in a
device.2 It can also be utilized to engineer low thermal con-
ductivity of thermoelectrics systems to improve energy con-
version efficiency.3 Previous work4–8 has used a Matthiessen
rule9 to relate thermal conductivity � to sample length L
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where �b is the thermal conductivity of bulk material and �
is a size-independent constant. While this rule has been suc-
cessfully applied,4,5 it is only applicable for heat conduction
through the “thickness” L of a film �i.e., the sample is as-
sumed to have an infinite cross section�. It cannot be applied
for heat conduction along a direction in the plane of the film,
nor can it be applied for any nanostructures with more than
one dimension at the nano- or microscale. Because a general
equation for thermal conductivity of nanostructures has not
been developed, some previous analysis has used the solu-
tion of Boltzmann partial differential equations in order to
explore the effect of nanostructure sizes.10–15 This approach
is complex and depends on an empirical estimate of the
specularity of the free surfaces. It has not been applied to
nanostructures with arbitrary dimensions in all three coordi-
nate directions, nor has it provided nonsectioned analytical
solutions. The lack of a tractable scaling law has posed a
hurdle in “phonon engineering” of many nanostructure appli-
cations. To overcome this problem, we have developed an
analytical scaling law that explicitly expresses thermal con-
ductivity of nanostructures as a function of dimensions in all
three coordinate directions. We have also verified the law
using large molecular dynamics �MD� simulations.

Consider the unidirectional heat conduction through the
length L of a box-shaped sample with a thickness t and a
width W, as illustrated in Fig. 1�a�. It is recognized that the
size effect on thermal conductivity comes from the surface
scattering of phonons, which diminishes as the distance from
the surface is increased. Hence, we divide the sample into
different regions with respect to the surfaces, Fig. 1. First,

the �y-z� cross section of the sample is divided into nine
regions as shown in Fig. 1�b�. These nine regions extend in
the x direction into nine small box-shaped pieces �referred to
as pillars hereafter� as shown in Fig. 1�a�. The eight pillars
surrounding the center pillar essentially form a shell whose
thickness is assumed to be d. Each pillar exhibits an apparent
mean thermal conductivity throughout length L. At a fixed
large value of d �say in the order of the phonon mean free
path�, the boundary environment of each pillar is indepen-
dent of sample dimension t and W. As a result, the apparent
thermal conductivity of each pillar is a function of L only.
Figure 1�b� indicates that for isotropic materials, the nine
pillars fall into three different types i=0,1 ,2, where i refers
to the number of the y or z surfaces bounding the pillar.
Correspondingly, we have three distinguishable conductivity
functions �0�L�, �1�L�, and �2�L�. Because heat transports
through the pillars in parallel, the overall thermal conductiv-
ity of the sample can be calculated as an area-weighted av-
erage leading to
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FIG. 1. Heat conduction through the length L of a box-shaped
material with a thickness t and a width W.
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Now, we consider the thermal transport of each pillar. As
shown in Fig. 1�c�, the pillar can be divided into a center
section with a length of L−2� and two end sections with a
length of �. At a large given value of �, the two end surfaces
do not interact. As a result, the apparent thermal conductivi-
ties of the center and the end sections of the pillar are inde-
pendent of the length L, and therefore can be represented,
respectively, by two constants �i,c and �i,e, where subscript i
is the pillar number, and c and e designate the center and end
sections. Because heat transports through the center and end
sections in serial, the overall thermal resistivity �inverse of
thermal conductivity� of the pillar can be calculated as the
length-weighted average resistivity: �i

−1�L�= �1−2� /L� ·�i,c
−1

+ �2� /L� ·�i,e
−1, which can be rewritten as

�i�L� =
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, �3�

where �i=2� · ��i,c−�i,e� /�i,e is a positive constant. Substi-
tuting Eq. �3� into Eq. �2�, we have an analytical scaling law
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Equation �4� is valid if a sufficiently large d is used to sub-
sume the surface scattering affected region. Once d is given,
Eq. �4� involves six parameters �0,c, �1,c, �2,c, �0, �1, and �2,
where �0,c is essentially the bulk thermal conductivity �b,
�1,c is the thermal conductivity near a flat surface, and �2,c is
the conductivity near a corner region, see Figs. 1�b� and 1�c�.
For MD applications, it is necessary to perform several simu-
lations at different dimensions in order to fit Eq. �4�. If the
minimum dimensions used in these simulations are repre-
sented by tmin and Wmin, then the largest d that still enables
all the MD data to satisfy the geometry condition �i.e., 0
�2d� t and 0�2d�W� is tmin /2 or Wmin /2 depending on
which dimension is smaller.

The model concepts described above can be applied to
any sample shapes. Equation �4� also has more general uses.
For instance, we found that substituting t=W=2r, �1,c=�2,c,
and �1=�2 into Eq. �4� resulted in the same axial thermal
conductivity of a circular wire as a function of wire radius r
and length L as we would otherwise derive by directly ap-
plying the concepts to the wire case.

When t→� and W→�, Eq. �4� indicates that the inverse
of thermal conductivity along the length of sample with an
infinite cross section is a linear function of the inverse of the
length 1 /L, exactly matching the established equation, Eq.
�1�.4–8 When L→� and t→� or L→� and W→�, Fig. 1
corresponds to heat transport along a direction in the plane of
a large film. Equation �4� then shows that thermal conduc-
tivity is a linear function of the inverse of the film thickness

�W and t in the two cases both correspond to film thickness�.
Equation �4� can be effectively verified by checking these
linear relationships using either experiments or MD simula-
tions. Here, we perform “direct method” MD simulations4 to
verify the linear relationships. The �0001� thermal conduc-
tivity of a wurtzite GaN crystal was calculated at a tempera-
ture of 300 K. GaN is of interest because many of its appli-
cations, such as laser diodes and high electron mobility
transistors,16–21 operate at high current and power densities
where heat dissipation is crucial.

A Stillinger-Weber potential developed by Bere and
Serra22,23 was used. The computational cell is aligned so that
the x, y, and z coordinates correspond, respectively, to

�0001�, �1̄100�, and �112̄0� directions. A periodic boundary
condition was used along the z axis to simulate an infinite
width of W→�, and a free boundary conditions is used in

the y direction to simulate the commonly encountered �1̄100�
surface. Series of thermal conductivities at two lengths �in
the x direction� of L=260 and 390 Å and different thick-
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FIG. 2. GaN thermal conductivity as a function of sample
dimension.
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nesses �in the y direction� of t between 276 and 829 Å and
t→� �periodic boundary conditions� were calculated. All the
simulations applied a very long averaging time of at least 11
ns �some reached 21 ns�. Our systems are also relatively
large �up to 900 000 atoms�. Both a long averaging time and
a large number of atoms available for averaging help gener-
ate highly accurate results4 that strengthened the conclusions.
The calculated values of � are shown in Fig. 2�a� against 1 / t,
where the lines are produced using Eq. �4� with the assigned
value d=138.13 Å and the fitted parameters �0,c
=178.38 W /K m, �1,c=151.65 W /K m, �0=1288.10 Å,
and �1=1329.65 Å. It can be seen that the MD data well
satisfied the predicted linear relationship and the agreement
between the MD data and Eq. �4� is excellent. Previously
calculated thermal conductivities at different sample lengths
L but a fixed sample width W→� and a fixed sample thick-
ness t→� 4 are reproduced in Fig. 2�b� using the 1 /� vs 1 /L
scale, along with the line generated using Eq. �4� with the
same parameters. Again the predicted linear relationship is
well satisfied and excellent agreement is obtained with only
one set of parameters �d, �0,c, �1,c, �0, and �1� for both thick-
ness and length functions.

In summary, we have developed an analytical law for size

effects on thermal conductivity of nanostructures. This law is
very well verified by MD simulations. We expect that it will
enable fundamental methods such as MD simulations to be
used to study thermal transport at realistic length scales,
which would be otherwise impossible due to the limitation of
the length scales that can be directly simulated. We also ex-
pect that this law can guide experiments to design nanostruc-
tured thermal devices. Note that when experimental thermal
conductivity data is obtained at different dimensions, the
same approach can be used to fit Eq. �4�. Since experiments
are likely to be performed at larger sample dimensions,
larger values of d can be chosen to produce even more ac-
curate results. Nonetheless, simulations performed here
strongly indicated that even d=138.13 Å is sufficient for
GaN.
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